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This paper deals with the problem of unsteady melting of a vitreous 
layer due to aerodynamic heating in the absence of self-similar solu- 
tions. Aerodynamic heating and friction are regarded as known func- 
tions of the smface temperature, the longitudinal coordinate, and 
the time. 

S ta tement  of the p rob lem.  The flow of a v iscous  
f i lm of me l t  is  desc r ibed  by the wel l -known bounda ry -  
l ayer  equat ions 

0 (rka) F O(r~v) = 0 (1) 
Ox Oy 

(k = I for a x i s y m m e t r i c  flow and k = 0 for  plane flow), 

0 ( O U ) + p X  Op =0, (2) 

= N  (3) 

The x axis is d i rec ted  along the sur face  of the solid at 
the in i t ia l  ins tan t  and the y axis is d i rec ted  along the 
n o r m a l  to this sur face  into the solid. Henceforth we 
will  r ega rd  p, c, and X as cons tan t s ,  X and p as known 
funct ions of x, and p as an unknown function of the 
t empe ra tu r e .  For  v i t reous  m a t e r i a l s  usua l ly  ~ = 
= exp [(a/T) m + bl.  

The s impl i f ica t ions  made  in Eqs.  (2) and (3) a re  
gene ra l l y  accepted in the solut ion of s i m i l a r  p rob lems .  
They a re  jus t i f ied  in view of the low veloci ty  of flow 
of the f i lm of mel t .  

Boundary condi t ions  a re  imposed on the moving  
surface  y = Yw(X,t), 

OT Ou 
. . . . .  % ,  (4) 

~0!1 q w ' ~ O y  

where  qw and ~'w are  a s sumed  to be known funct ions 
of the sur face  t e m p e r a t u r e ,  the longitudinal  coordt -  
nate, and the t ime.  

In the absence  of evapora t ion  of the mel t ,  yw(x,t)  
is given by the equat ion 

Oy w Oy~ +u| --~v.. (5) 
Ot Ox 

In the case of a cons ide rab le  th ickness  of l ayer  we 
can solve the p rob lem as for a s emi - i n f i n i t e  body and 
impose the boundary  condit ion 

when T ~< T,~ u = v = 0, (6) 

where T m is an " a r b i t r a r y  mel t ing  point," which is 
in t roduced for v i t reous  m a t e r i a l s  so that  the m a t h e -  
mat ica l  s t a t emen t  of the p rob lem is approx imate ly  

co r rec t .  The r ea sons  for the in t roduct ion  of an " a r -  
b i t r a r y  mel t ing  point" a re  given in [2]. 

The in i t ia l  condit ions a re  

when t = 0  T = T  0(x, Y), Yw=0- (7) 

In addit ion,  we mus t  impose condit ions when x = 0. 
For  ins tance ,  at the f rontal  point  of a blunt  body 

when ' x = 0  0T = 0 ,  Og~._=O. (8) 
Ox Ox 

Method of solut ion,  We as sume  that function T0(x , y) 
is such that when y ~ oo, T0(x,y ) ~ Too (Too = const) 
and OT0/Oy ~ 0. 

We can then show that the r equ i red  function T(x, 
y, t) for any fixed t has the same p rope r t i e s  when y 
~ o o .  

In t roducing the new requ i red  function | = T - Too 
and then in tegra t ing  Eq. (3) with respec t  to y f rom Yw 
to infini ty,  we obtain the in tegra l  r e la t ionsh ip  

OA + 10 ( rkB)  = q__~ , (9) 

Ot # Ox p c 

whe re 

co 

A= So y, B= S 
Yw Yw 

We approximate  the t e m p e r a t u r e  d i s t r ibu t ion  by an 
exponent ial  dependence on y, 

0 =O~(x,  t) exp[--(y--y~)/8(x, t)l. (10) 

It is obvious that the above condit ions at inf ini ty  
a re  fulf i l led in this  case .  Using the f i r s t  of the condi -  
t ions (4) we obtain a r e la t ionsh ip  between @w and 6 

= s  

and to de t e r mi ne  @w(X,t) we use Eq. (9). 
To d e t e r m i n e  the posi t ion and veloci ty  of d i s p l a c e -  

ment  of the sur face  of the liquid f i lm we use Eq. (5), 
which can be conver ted ,  by re fe rence  to (1), to the 
form 

where 

OYw ~ 1 0 (#C) 
Ot r ~ Ox 

(11) 

C--= ; udy. 
y~ 
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To calculate  B and C we need to know the veloci ty 
u. F r o m  Eq. (2) we can obtain 

g 

grn 

(y = Ym(X, t) is the sur face  on which T = Tm). 
If the relationship between viscosity and tempera- 

ture is approximated by a power relationship 

~ / ~  = (@/o.)-~, (12) 

then, in view of (10), the v i scos i ty  d i s t r ibu t ion  in the 
l ayer  of mel t  will take the form 

~ = ~ e x p  ( n  g - - g w )  
5 

and, hence, 

u =  "%,-- X ~ + X 
~w n -~-x - - P  g gw 

X e x p ( - - n  g--g~ ~ n  5 - X  

[ t 0~ 

Since the v i scos i ty  Pm -- P(Tm) is high (this is one of 
the condi t ions  of se lec t ion  of Tm), the second t e r m  
in fo rmula  (13) can be neglected,  which is equivalent  
to r ep l acemen t  of condit ion (6) by the condit ion 

when g -~ ~ u ~ O, v ~ O. 

Such a r e p l a c e m e n t  can be c a r r i e d  out only af ter  
an approximat ion  of the actual  law of var ia t ion  of the 
v i scos i ty  by the approximate  r e l a t ionsh ip  (12). In the 
in i t ia l  s t a tement  of the p rob lem the condit ion when 
y ~ ~o does not ensu re  a f inite value of the veloci ty  
for  an a r b i t r a r i l y  ass igned T~. 

Having the d i s t r ibu t ion  of veloci ty (13) and t e m p e r -  
a ture  (10), we ea s i l y  obtain 

A = 0~6 = X 02 
q~ 

B -  T w - - 6  - -  - - p  X , 
~,n(n + I )  n (n +1) 

c = - -  ~ - T  -g  ~twt~ 2 

In the deduction of these  fo rmulas  t e r m s  of the o rder  
1 /p  m were neglected.  

It  should be noted that  our solut ion depends on n, 
the index of the power in fo rmula  (12), and hence this 
gives r i se  to the quest ion of the bes t  approx imat ion  
of the v iscos i ty .  It is obvious that n can depend on the 
t e m p e r a t u r e  range in which the approx imat ion  is made,  
and hence may depend on x and t. Using the c o r r e s -  
pondence of the t rue  value of the v i scos i ty  and the ap-  
proximate  one at points @w and ~l, we obtain 

n = l n  ix(01) / l n  O___~ . (14) 
(O~) O~ 

The choice of | is a r b i t r a r y  within wide l im i t s .  
The bes t  choice is | = @w/2, where the v i scos i ty  is 
f a i r ly  well approximated  in a wide t e m p e r a t u r e  range.  
The l imi t ing  case  @x ~ ~v ,  used in [3], gives a good 
approximat ion  only close to the sur face  of the liquid 
f i lm,  which leads  to a la rge  e r r o r  in the calcula t ion.  

Thus,  the p rob lem has been reduced to the so lu -  
tion of Eqs.  (9) and (11) with the ini t ia l  condi t ions  

when t = O  Ow--~To(x, O)--T| gw=O, 

and when x = O  O@w_O, .Ova, = 0 .  
Ox Ox 

I n s t e a d  of the condit ion for | we can wri te  the con-  
dit ion for A, 

when t = 0  A = A 0 ,  

where 

A0 = ~ [To (x, g) --  Too] dg. 
0 

Solution of hea t -conduc t ion  equat ion and ca lcula t ion  
of mel t ing  at  the f ronta l  point  of a blunt  body. We will 
cons ide r  the appl icat ion of the above method in p a r t i c -  
u la r  cases  for c o m p a r i s o n  with known solu t ions .  

Heat -conduct ion  equation.  In the solut ion of the hea t -  
conduction equat ion by the in tegra l  method we obtain 
the equation for the de t e rmina t ion  of | 

dt pc 

If qw = const  and | = 0, then 

q~" VT. 

If qw = ~174 - | and Ow(0 ) = 0, then 

pck  ~ t = l n  1-- Ow + ' 2 -  (1--OJOo0) 2 

The c o r r e spond i ng  exact  solut ions  [4] have the form 

o;~ 2 q~ V 7  
V~ VFi-~ 

for qw = const  and 

v7- 

0~, I 1 2 ~ ( _  z2 ) dz] ( c~2t ~ 1 J exp 

0 

for qw = c~(| - OwL 
The f igure  shows the r e su l t s  of ca lcu la t ion  f rom 

these f o r m u l a s  with the following data:  p = 2100 kg /m 3, 
c = 1210 a/kg.  deg, X = 10.6 W / m "  deg. Curves  6 and 
7 are  the exact  and approximate  solut ions  for qw = 
= 4 . 3 5 . 1 0 6 W / m  a, and cu rves  I and 2 a re  for  qw = 
= 1740 (6700 - Ow) W / m  2. In both cases  the e r r o r  of 
the approximate  solut ion does not  exceed 12%. 

Melt ing at f ronta l  point.  At the f ronta l  point of a 
b lunt  body 0p/ax = p"x, T w = Z'wX, r = x, 0| = 0, 
and in the absence  of m a s s  forces  (X = 0) we have 

1 0 ( r k B )  .=. (k-:i-1)Ow6 2 [ , ~ _  p"5 2n +l  ] .  
r k Ox t%n(n+l)  [ n ( n + l )  J 
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In the case  qw == ~(| - O w L  Eqs.  (9) and (11) take the 
f o r m  

pc 

s 2 (2Ooo-- Ow) Ow d O~ = 
u~ (000- Ow) ~ dt 

(k+1)53 [ ~ - - p " 6  2n+i  ] 
~wn(n+l) n(n+l)  ' (15) 

dt ~w n~ ~[~ - -2p"  . (1 6) 

The ca lcu la t ion  was c a r r i e d  out for  ~v = 7190 N / m  3, 
P . . . .  2.885 ~ 107 N / m  s , Too = 300 ~ K, p = exp [ (4840 /  
/T)  1"6~2 - 2.3] N �9 s e c / m  2 (the r e s t  of the data  w e r e  the 
same as in the solut ion of the hea t -conduc t ion  e q u a -  
tion). 

| 
' / I 

0 2 3 

Surface  t e m p e r a t u r e  |  as funct ion of t i m e  t, s ec :  

1) f r o m  hea t -conduc t ion  equat ion qw = ~(| - | 
exact  solut ion;  2) approx ima te  solut ion;  3) mel t ing ,  
exact  solut ion;  4) app rox ima te  solution,  n f r o m  (14); 
5) app rox ima te  solution,  n f r o m  (17); 6) f r o m  hea t -  
conduction equat ion qw -- const ,  exac t  solut ion;  7) ap-  

p r o x i m a t e  solution~ 

S teady- s t a t e  mel t ing.  To obtain the sur face  t e m p e r -  
a ture  in s t e ady - s t a t e  mel t ing  at the f ron ta l  point we 
need m e r e l y  equate the r ight  side of (15) to ze ro ,  

s (k+ 1)63 I .c~__ p,, 6 2 n + l  ] ~ 0 .  
pc p.wn(n + 1) n(n+ 1) 

It is i n t e r e s t i ng  to c o m p a r e  this equation with the s u r -  
face  t e m p e r a t u r e  in [1], which in our  symbols  has the 
f o r m  

(k+ ' l )63  [ ~ : - - p " 6  21~0. 
p c ~tw n ~ 

The ra te  of me l t i ng  is ca lcu la ted ,  as in this  work,  
f r o m  f o r m u l a  (16), but in view of the d i f fe rence  in the 
t e m p e r a t u r e  de t e rmina t ion  the ra te  of mel t ing  obtained 
is d i f fe ren t  f rom that  ca lcu la ted  by our  method.  C a l -  
culat ion with the above data  by the method of [1] gave 
@w = 2030~ K, dYw/dt = 1.57 �9 10 -3 m / s e c ,  and f r o m  the 
method of this  work @w = 2060~ K, dYw/dt = 1.83 �9 10 -3 

m / s e c ,  whe reas  the exact  solut ion is "~)w = 2047~ K, 
dyw/dt  = 1.75 �9 10 -3 m / s e c .  

The conducted ca lcu la t ions  show that the above -  
expounded in t eg ra l  method can give r e s u l t s  which a r e  

in s a t i s f a c t o r y  a g r e e m e n t  with the exac t  solution.  This  
method a l so  enables  a f a i r l y  s imple  ca lcu la t ion  of un-  

s teady  me l t ing  of a v i t r eous  l aye r  not only in the v i -  
c in i ty  of the f ron ta l  point, but a lso  on the s ide sur face .  

NOTATION 

t is the time; u, v are the projections of velocity on 
x and y axes; X is the projection of mass forces on x 
axis; T is the temperature; p is the viscosity; k is the 
thermal conductivity; c is the specific heat; p is the 
density; p is the pressure; q is the heat flux; T is the 
friction stress; r is the distance from outline of body 
to axis of symmetry. The subscript c0 refers to values 
on the melt surface. 

In one f o r m  of the ca lcu la t ion  we used f o r m u l a  (14), 

where  | = Ow/2, and in the second f o r m  we used the 
fo rmula  

n = 1.612(4840/T) '6~20~/(O~nt- T~), (17) 

obtained from (14) by the limiting transition when | --~ 
@w. Curves 4 and 5 in Fig. 1 correspond to these 

forms. A comparison of the results of calculation with 
the exact solution (curve 3) shows that in the choice of 
n we must obtain a good approximation of the viscosity 
over the whole range of temperature variation, and not 
only close to the surface. 
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