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This paper deals with the problem of unsteady melting of a vitreous
layer due to aerodynamic heating in the absence of self-similar solu~
tions. Aerodynamic heating and friction are regarded as known func-
tions of the surface temperature, the longitudinal coordinate, and
the time.

Statement of the problem. The flow of a viscous
film of melt is described by the well-known boundary-
layer equations
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The x axis is directed along the surface of the solid at
the initial instant and the y axis is directed along the
normal to this surface into the solid. Henceforth we
will regard p, ¢, and X as constants, X and p as known
functions of x, and y as an unknown function of the
temperature. For vitreous materials usually u=

= exp[(a/T)™ + b]. '

The simplifications made in Egs. (2) and (3) are
generally accepted in the solution of similar problems.
They are justified in view of the low velocity of flow
of the film of melt.

Boundary conditions are imposed on the moving
surface y = Vo &Est)s
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where g, and 1, are assumed to be known functions
of the surface temperature, the longitudinal coordi- -
nate, and the time.

In the absence of evaporation of the melt, yy (x,t)
is given by the equation

_%_.f.uw %.=0w, (5)
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In the case of a considerable thickness of layer we
can solve the problem as for a semi-infinite body and
impose the boundary condition

when TLT, u=v=0, (6)

where T, 1s an "arbitrary melting point," which is
introduced for vitreous materials so that the mathe-
matical statement of the problem is approximately

correct. The reasons for the introduction of an "ar-
bitrary melting point" are given in [2].
The initial conditions are

when =0 T=Ty(x, 9), yu=0. (7

In addition, we must impose conditions when x = 0,
For instance, at the frontal point of a blunt body
or Yy

when =0 — =0,
dx ox

=0. (8)

Method of solution. We assume that function Ty(x, y)
is such that when y — «, Ty(x,y) = Te (Tw = const)
and 8T;/dy — 0.

We can then show that the required function T(x,

v, t) for any fixed t has the same properties when y —
— 00,

Introducing the new required function ® = T — Ty
and then integrating Eq. (3) with respect to y from yy,
to infinity, we obtain the integral relationship
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where

A= Sm@dy, B= fuedy.
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We approximate the temperature distribution by an
exponential dependence on y,

0= ®w (x, t) exp [— (y "yw)/s (x, Hl. (10)

It is obvious that the above conditions at infinity
are fulfilled in this case. Using the first of the condi-
tions (4) we obtain a relationship between @y and §

6 = }"@m/qwf

and to determine @, (x,t) we use Eq. (9).

To determine the position and velocity of displace~
ment of the surface of the liquid film we use Eq. (5),
which can be converted, by reference to (1), to the
form
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To calculate B and C we need to know the velocity
u. From Eg. (2) we can obtain
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(V = yyu X, t) is the surface on which T = Tyy,).
If the relationship between viscosity and tempera-
ture is approximated by a power relationship

Wpe = (0/0,)7", 12)

then, in view of (10), the viscosity distribution in the
layer of melt will take the form

U = jly €XP (n _y_—%y_"’) ,

and, hence,
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Since the viscosity p,y, = u(Ty,) is high (this is one of
the conditions of selection of Ty,), the second term
in formula (13) can be neglected, which is equivalent
to replacement of condition (6) by the condition

when y-—>o u—>0, v->0.

Such a replacement can be carried out only after
an approximation of the actual law of variation of the
viscosity by the approximate relationship (12). In the
initial statement of the problem the condition when
y — « does not ensure a finite value of the velocity
for an arbitrarily assigned Te.

Having the distribution of velocity (13) and temper-
ature (10), we easily obtain
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In the deduction of these formulas terms of the order
1/py, were neglected.

It should be noted that our solution depends on n,
the index of the power in formula (12), and hence this
gives rise to the question of the best approximation
of the viscosity. It is obvious that n can depend on the
temperature range in which the approximation is made,
and hence may depend on x and t. Using the corres-
pondence of the true value of the viscosity and the ap-
proximate one at points @y and ®;, we obtain

=1n-ﬂ@i/lngﬂ. (14)
H(ew) 61
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The choice of @, is arbitrary within wide limits.
The best choice is ®; = @y /2, where the viscosity is
fairly well approximated in a wide temperature range.
The limiting case @ — @y, used in [3], gives a good
approximation only close to the surface of the liquid
film, which leads to a large error in the calculation.

Thus, the problem has been reduced to the solu-
tion of Egs. (9) and (11) with the initial conditions

when =0 O,=T,(x, 0) —Tw, Yp=20,

09, =0, %w _.o.
0x 0x

and when x =0

‘Instead of the condition for @, we can write the con-
dition for A,

when t =0 A=A4,,

where

Ay = ( [Ty (x, y) —T]dy.
0

Solution of heat-conduction equation and calculation
of melting at the frontal point of a blunt body. We will
consider the application of the above method in partic-
ular cases for comparison with known solutions.

Heat-conduction equation. In the solution of the heat-
conduction equation by the integral method we obtain
the equation for the determination of Oy (t)

4 x%):gw,
dt Gu pc’

If gy = const and O (0) = 0, then
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If gy = @@y — Ow)and Oy (0) = 0, then
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The corresponding exact solutions [4] have the form
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for qy = al(@y) — @y,).

The figure shows the results of calculation from
these formulas with the following data: p = 2100 kg/m 3
¢ =1210 J/kg -deg, A= 10.6 W/m-deg. Curves 6 and
7 are the exact and approximate solutions for gy, =
=4.35-10°W/m?, and curves 1 and 2 are for qy =
= 1740 (6700 — ®y) W/m?. In both cases the error of
the approximate solution does not exceed 12%.

Melting at frontal point. At the frontal point of a
blunt body 8p/8x = p"X, Ty = TyX, I =X, 0@ /8x = 0,
and in the absence of mass forces (X = 0) we have

1 9(rB) - (k+1)8,6% [ S 2n 41 ] )
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In the case gy = @@y — ©y), Egs. (9) and (11) take the
form

N (28— 6,0, dO, _

o? (O — ©0,) dt
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dy., (k-+1) & o 8
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dt W 2 [rw P n] (16)

The calculation was carried out for T{N = 7190 N/ms,
p' = —2.885-107 N/m?*, T, = 300° K, u= exp[(4840/
/Y812 — 2 31 N - sec/m? (the rest of the data were the
same as in the solution of the heat-conduction equa~
tion).
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Surface temperature ®W, as function of time t, sec:

1) from heat-conduction equation gy = 0:(&y — By),

exact solution; 2) approximate solution; 3) melting,

exact solution; 4) approximate solution, n from (14);

5) approximate solution, n from (17); 6) from heat- -

conduction equation gy, = const, exact solution; 7) ap-
proximate solution.

In one form of the calculation we used formula (14},
where ®; = ®W/2, and in the second form we used the
formula

n=1.612(4840/T)"%? © /0, + T.), (17

obtained from (14) by the limiting transition when ®; —
— @y. Curves 4 and 5 in Fig. 1 correspond to these
forms. A comparison of the results of calculation with
the exact solution (curve 3) shows that in the choice of
n we must obtain a good approximation of the viscosity
over the whole range of temperature variation, and not
only close to the surface.
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Steady-state melting. To obtain the surface temper-
ature in steady-state melting at the frontal point we
need merely equate the right side of (15) to zero,

3
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It is interesting to compare this équation with the sur-
face temperature in [1], which in our symbols has the
form

b GO [y 2]

pc B 12 “ n

The rate of melting is calculated, as in this work,
from formula (16), but in view of the difference in the
temperature determination the rate of melting obtained
is different from that calculated by our method. Cal-
culation with the above data by the method of [1] gave
@, = 2030° K, dyy,/dt = 1.57-107% m/sec, and from the
method of this work @y = 2060° K, dyy,/dt =1.83.1073
m/sec, whereas the exact solution is Gy = 2047° K,
dyw/dt = 1.75-1073 m/sec.

The conducted calculations show that the above-
expounded integral method can give results which are
in satisfactory agreement with the exact solution. This
method also enables a fairly simple calculation of un-
steady melting of a vitreous layer not only in the vi-
cinity of the frontal point, but also on the side surface.

NOTATION

t is the time; u, v are the projections of velocity on
x and y axes; X is the projection of mass forces on x
axis; T is the temperature; u is the viscosity; A is the
thermal conductivity; c is the specific heat; p is the
density; p is the pressure; q is the heat flux; r is the
friction stress; r is the distance from outline of body
‘to axis of symmetry. The subscript w refers to values
on the melt surface.

REFERENCES

1. H. A, Bethe and M. C. Adams, JA/SS, 26, no.
6, 321, 1959,

2. S. K. Matveev, Vestnik Leningradskogo un-ta,
no. 13, 1964.

3. B. I. Reznikov, PMTF, no. 6, 1964.

4, A, V., Luikov, Theory of Heat Conduction [in
Russian], GITTL, 1952.

13 June 1966 Zhdanov State University,

Leningrad



